Long Tail Query Enrichment for Semantic Job Search

By: Layla Pournajaf (Facebook)
Khalifeh AlJadda (CareerBuilder)
Mohammed Korayem (CareerBuilder)

Search Data Science @CareerBuilder
Khalifeh AlJadda
Lead Data Scientist, Search Data Science

• Joined CareerBuilder in 2013 as intern
• PhD, Computer Science – University of Georgia
• BSc, MSc, Computer Science, Jordan University of Science and Technology

Activities:
• Founder and Chairman of Southern Data Science Conference (www.southerndataascience.com)
• Frequent public speaker in data science and big data analytics domains
• Creator of GELATO (Glycomic Elucidation and Annotation Tool)

Check the CFP of our first Research Track
Keyword-based Search

- Traditional search engines (i.e. Lucene, Solr, Elasticsearch) tokenize text and find documents containing those tokens and linguistic variations:
 - **User’s Search:** `machine learning`
 Tokenization: `["machine", "learning"]` =>
 Stemming: `["machin", "learn"]`
 Final Query: `machin AND learn`
 This could match a document for a “machinist” who has “learned” something.
 - `software architect` => … => `software AND architect`
 Might identify a **building architect** requiring knowledge of specialized architecture `software`
Semantic Search (Search for Things not Strings)

- We need a way to identify and search for the **meaning of keyword phrases**, not just the individual text tokens
 - i.e. `machine learning` = "machine learning" OR "data scientist" OR "mahout" OR "svm" OR "neural networks"
Our Target

User’s Query:
machine learning research and development Portland, OR software engineer AND hadoop, java

Traditional Query Parsing:
(machine AND learning AND research AND development AND portland) OR (software AND engineer AND hadoop AND java)

Semantic Query Parsing:
"machine learning" AND "research and development" AND "Portland, OR" AND "software engineer" AND hadoop AND java
Our Target

Semantically Expanded Query:

("machine learning"^10 OR "data scientist" OR "data mining" OR "artificial intelligence")
AND ("research and development"^10 OR "r&d") AND
AND ("Portland, OR"^10 OR "Portland, Oregon" OR {geofilt pt=45.512,-122.676 d=50 sfield=geo})
AND ("software engineer"^10 OR "software developer")
AND (hadoop^10 OR "big data" OR hbase OR hive) AND (java^10 OR j2ee)

Job Level Job title Company
Crowdsourced Query Augmentation through Semantic Discovery of Domain-specific Jargon
Problem Description

• The typical distribution of query frequencies is very heavy on the tail which results in a large set of unpopular or uncommon queries.

• Although, tail queries are individually uncommon, they make up a large portion of queries collectively.

• Ignoring such heavy long tails in the job search domain may result in turning away job seekers who are not able to find relevant jobs.

• Our approach of using the wisdom-of-the-crowd via the co-occurrence of queries can’t enrich such long tail queries.
Methodology

Query Enrichment Using Click-Skip Graph

Search Log Analyzer

Co-Clicks

Co-Skips

Query-Job Graph

Re-rank Jobs

Content-based Augmentation

Job Classification

Skill Normalization

Evaluation and Noise Filtering
Click-Skip Bipartite Graph

- Nodes of our click-skip graph comprise of jobs and queries while edges capture explicit and implicit behavior of query issuers.
- We log the **co-clicks** – when a job is clicked as a result of a query, and **co-skips** – when a job appears in the result set of a query but is skipped for a job with higher ranking. We also record the original rankings of jobs in the search results of queries.
We re-rank the retrieved jobs for each query using the collected signals on the edges of the click-skip graph.

- we assume the combined click-skip score follows a beta distribution.
- we expect that the jobs with higher rankings receive more clicks than skips, so we can use ranking values to construct our prior belief parameters $a = c_r$ and $b = s_r$ for every ranking.

\[
c_r = \left(\frac{1 - \mu_r}{\sigma_r^2} - \frac{1}{\mu_r} \right) \mu_r^2
\]

\[
s_r = c_r \left(\frac{1}{\mu_r} - 1 \right)
\]
• Next, we estimate the posterior distribution of our aggregate score by applying the observed co-Clicks and co-Skips.

• Finally, we compute the expected aggregate score for every query job pair (q, j) with ranking of $r = \text{ranking}_{qj}$ as below:

\[
\text{aggScore}^{(r)}_{qj} = E(\beta(c_r + \text{coClicks}_{qj}, s_r + \text{coSkips}_{qj}))
\]
\[
= \frac{c_r + \text{coClicks}_{qj}}{c_r + \text{coClicks}_{qj} + s_r + \text{coSkips}_{qj}}
\]
Content-based Augmentation

• We select the top 3 jobs after re-ranking.
• For each job we send it to our inhouse NLP parser.
• The parsed jobs then sent to the in-house job title classification and skills normalization.
• The normalized job title(s) and skills have to pass a validation phase before they are used to enrich the related long-tail query.
Experiment and Results

TABLE I: Click-Skip Graph Summary

<table>
<thead>
<tr>
<th># of Queries</th>
<th># of Popular Queries</th>
<th># of Tail Queries</th>
<th># of Jobs</th>
<th># of Edges</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.8K</td>
<td>12.4K</td>
<td>13.4K</td>
<td>200K</td>
<td>400K</td>
</tr>
</tbody>
</table>

TABLE II: Enrichment Relevancy Evaluation

<table>
<thead>
<tr>
<th>Method</th>
<th>Coverage [w/o filtering]</th>
<th>Coverage [w/ filtering]</th>
<th>Avg. Relevancy Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>No-prior</td>
<td>98.04%</td>
<td>88.53%</td>
<td>0.79</td>
</tr>
<tr>
<td>Rank-based prior</td>
<td>98.04%</td>
<td>88.76%</td>
<td>0.83</td>
</tr>
</tbody>
</table>
Conclusion and Future Work

- we propose a method for semantic augmentation of long tail queries in the job search domain using clickthrough and search logs.

- Our method identifies top relevant jobs by analyzing the clicks and skips signals of job seekers and extracts their classifications to generate richer queries.

- we plan to extend this method by building a query embedding with a more focus on the contents of both the tail queries and clicked jobs.
We Are Hiring
(PhD Interns for Spring)

URL: www.aljadda.com
Twitter: @aljadda
Email: khalifeh.aljadda@careerbuilder.com